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When using Laplace transforms it is usually required to invert a Laplace

transform to complete a calculation. Saff and Snider give a formula for
finding the inverse Laplace transform in section 8.3, in Theorem 6:

If a function F (t) is piecewise smooth on every finite interval and |F (t)|
is bounded by Me−αt for t≥ 0,then the Laplace transform L{F}(s) exists
for ℜ(s)>α. For all t > 0 and any a > α, the inverse transform is given by

F (t+)+F (t−)
2

=
1

2πi
p.v.

∫ a+i∞

a−i∞
L{F}(s)estds (1)

The quantity on the LHS copes with functions that are discontinuous at
certain points. For a continuous function, the LHS would be just F (t). The
“p.v.” stands for “principal value”. The limits on the integral indicate that
the range of integration extends along the vertical line ℜ(s) = a from −∞

to ∞. In practice, we usually use Cauchy’s residue theorem to evaluate the
integral.

Example 1. Find the inverse transform of

g (s) =
1

s2 +4
(2)

We could just look this up in a table of Laplace transforms, but we will use
1 to show how the method works.

We can write

g (s) =
1

(s+2i)(s−2i)
(3)

so the function has simple poles at s=±2i. We can choose any value of a,
so to include the poles we take a= 3 and use the contour in Fig. 1.

We want the integral along the vertical (red) path as the limits extend to
infinity. Along the curved (blue) path, we have

z = 3+ρeiθ (4)
1
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FIGURE 1. Contour for inverse Laplace transforms.

where ρ is the radius of the circle and π
2 ≤ θ ≤

3π
2 . We therefore have the

contour integral (where we replace s by z in 1)∫
C

e(3+ρcosθ)teiρtsinθ

(z+2i)(z−2i)
dz (5)

Along the blue arc, for t ≥ 0, the integral is bounded by (since πρ is the
circumference of the arc):∣∣∣∣∣e(3+ρcosθ)teiρtsinθ

z2 +4

∣∣∣∣∣πρ≤
∣∣∣e(3+ρcosθ)t

∣∣∣πρ
(ρ−3)2 +4

≤ e3t

(ρ−3)2 +4
πρ→ 0 (6)

where the second inequality follows because cosθ is negative for π
2 ≤ θ ≤

3π
2 . Thus the contour integral becomes just the integral along the red line as
ρ→ ∞. By the residue theorem we have

∫ 3+i∞

3−i∞

ezt

(z+2i)(z−2i)
dz = 2πi∑

Res

ezt

(z+2i)(z−2i)
(7)

We can use the residue theorem to work out the residues, and we have

Res(2i) = lim
z→2i

ezt

z+2i
=
e2it

4i
(8)

Res(−2i) = lim
z→−2i

ezt

z−2i
=
e−2it

−4i
(9)

https://physicspages.com/pdf/Mathematics/Residues%20revisited.pdf
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Putting it together, we get

F (t) =
1

2πi

[
2πi
(
e2it

4i
− e
−2it

4i

)]
(10)

=
sin2t

2
(11)

For t < 0, we can flip the contour in Fig. 1 horizontally about the red line, so
the blue arc covers the angles −π2 < θ < π

2 , in which the cosine is positive.
A similar analysis as above shows that the integral over the blue arc goes
to zero as ρ→ ∞. Since the contour now contains no poles, the integral is
zero, so the integral along the red line is also zero, meaning that F (t) = 0
if t <0.

Example 2. Find the inverse transform of

g (s) =
4

(s−1)2 (12)

We can choose a = 2 in 1 and use the same type of contour as before. A
similar analysis shows that the integral along the blue arc goes to zero. The
function now has a pole of order 2, so the residue is

Res

(
4ezt

(z−1)2 ,1

)
= lim
z→1

[
d

dz

(
(z−1)2 4ezt

(z−1)2

)]
= 4tet (13)

As there is only one pole, we have

F (t) = 4tet (14)

Example 3. Find the inverse transform of

g (s) =
s+1

s2 +4s+4
(15)

We can write this as
g (s) =

s+1

(s+2)2 (16)

so we have single pole of order 2 at s=−2, with residue

Res

(
(z+1)ezt

(z+2)2 ,−2

)
= lim
z→−2

[
d

dz

(
(z+2)2 (z+1)ezt

(z+2)2

)]
(17)

= e−2t (1− t) (18)

This is also the required inverse transform

F (t) = e−2t (1− t) (19)
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Example 4. Find the inverse transform of

g (s) =
1

s3 +3s2 +2s
(20)

=
1

s(s+2)(s+1)
(21)

Here we have 3 simple poles, so we calculate the residues for each:

Res
(

ezt

z (z+2)(z+1)
,0
)
=

1
2

(22)

Res
(

ezt

z (z+2)(z+1)
,−2

)
=
e−2t

2
(23)

Res
(

ezt

z (z+2)(z+1)
,−1

)
=−e−t (24)

We therefore have

F (t) =
1
2
+
e−2t

2
− e−t (25)

Example 5. Find the inverse transform of

g (s) =
s+3

s2 +4s+7
(26)

This one is a bit more complicated, as the denominator factors into

s2 +4s+7 =
(
s−
(
−2+

√
3i
))(

s−
(
−2−

√
3i
))

(27)

We can therefore find the residues at these two simple poles. This gets a bit
messy, so using Maple to do the algebra, we get

Res
(

(z+3)ezt

z2 +4z+7
,−2+

√
3i
)
=− i

6

(
1+ i
√

3
)√

3e(−2+i
√

3)t (28)

Res
(

(z+3)ezt

z2 +4z+7
,−2−

√
3i
)
=
i

6

(
1− i
√

3
)√

3e(−2−i
√

3)t (29)

By inspection, we can see that these two residues are complex conjugates of
each other, so their sum will be real. Again, using Maple to do the algebra,
we find

∑
Res

= e−2t cos
(√

3 t
)
+

√
3e−2t sin

(√
3 t
)

3
(30)

so this is the required inverse transform

F (t) = e−2t cos
(√

3 t
)
+

√
3e−2t sin

(√
3 t
)

3
(31)
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